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Abstract 

A finite isotropic cracked wedge under anti plane shear deformation with a crack along  
𝜃 = 0, 0 ≤ 𝑟 ≤ 𝑐 and a concentrated traction load along its radial edges is analyzed with 

particular consideration given to the displacement fields everywhere in the wedge. The 

problem is formulated using the Finite Mellin transform of the second kind, and the solution 

accompanied by employing the Wiener Hopf technique to obtain a closed form solution for 

the displacement everywhere in the wedge. It is found that at the region containing the crack, 

there is no continuity of the displacement fields, while continuity of the displacement fields 

exist in other regions of the wedge material. 
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INTRODUCTION 

The stress analysis in finite wedges has been the subject of numerous researches. Probably, the 

major interest in the wedge geometry can be accorded to the fact that half plane and edge cracks 

are special cases of wedge problems. Wedges are important geometries in the mathematical 

theory of elasticity, not only because of their applications in engineering problems but also, in 

a special case, a wedge can resemble other important geometries. Lap joints that have extensive 

applications in industries are examples of wedge applications. On the other hand, the problem 

regarding wedge-shaped geometry can be reduced to that of a quarter plane, a half plane, a 

plane, and an edged-cracked plane or a shaft, which are of  important applications in the  theory 

of elasticity and fracture mechanics. 

The problem of cracked isotropic wedges under anti plane shear deformation has been under 

consideration for decades. Analytical approach to the problem, under anti plane shear loading 

was presented by Erdogan and Gupta (1972). The anti plane shear deformation of a bimaterial 

wedge with finite radius was studied by Shahani (2007) for various boundary conditions. The 

solution of the governing differential equation was accompanied by the means of finite Mellin 

transform.The closed-form solution for the displacement and the stress fields in the entire 

domain were obtained. Shahani and Adibnazari (2000) studied the problem of anti plane shear 

deformation of perfectly bonded wedges as well as bonded wedges having infinite radii with 

an interfacial crack by means of the Mellin transform. Ma and Hour (1990) studied the anti 

plane shear deformation of dissimilar anisotropic wedges by adopting finite Mellin transform. 

Choi and Earmme (1990) investgated the problem of the kinked crack in anti plane shear with 

emphasis on the order of performing the two limit processes when the kinked length goes to 
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zero. They adopted the method of Mellin transform to formulate the problem, and solved the 

boundary value problem by the Wiener-Hopf technique, and obtained a closed form solution. 

In this article, emphasis is given to the displacement fields everywhere in a finite isotropic 

cracked wedge under anti plane shear deformation with a traction-traction concentrated load 

prescribed on the radial edges of the wedge. 

PROBLEM FORMULATION 

A finite isotropic wedge with equal apex angles 𝛟 is considered (see appendix for diagrams). 

A crack which lies on the line𝜃 = 0 , 0 ≤ 𝑟 ≤ 𝑐exists on the wedge. The condition of anti plane 

shear deformation is imposed on the wedge by the application of concentrated loads of 

magnitude T along𝜃 = 𝝓and𝜃 = −𝝓  at a distance h from the origin. Traction boundary 

conditions are assumed to act on the radial edges of the wedge, however, the faces of the crack 

is traction free. In such conditions, the only non-zero displacement component is the out-of-

plane component, 𝑊(𝑟, 𝜃)which is in the z-direction and which is a function of the in-plane 

coordinates 𝑟 𝑎𝑛𝑑 𝜃. 

The constitutive relationship for isotropic materials undergoing anti plane deformation are 

𝜎𝜃𝑧(𝑟, 𝜃) =
𝜇

𝑟

𝜕𝑊(𝑟,𝜃)

𝜕𝜃
 , 𝜎𝑟𝑧(𝑟, 𝜃) = 𝜇

𝜕𝑊(𝑟,𝜃)

𝜕𝑟
                                                                          (1) 

With the loading and known equations of elasticity, the boundary value problem that governs 

the wedge problem is given in terms of displacement as 

(
𝜕

𝜕𝑟2
+

1

𝑟

𝜕

𝜕𝑟
+

1

𝑟2

𝜕2

𝜕𝜃2
) 𝑊(𝑟, 𝜃) = 0 ,0 ≤ 𝑟 ≤ 𝑐 , −𝝓 ≤ 𝜃 ≤ 𝝓                                      (2) 

The boundary conditions are: 

On the radial surfaces 

𝜎𝜃𝑧(𝑟, 𝜙) = 𝑇𝛿(𝑟 − ℎ) , 0 ≤ 𝑟 ≤ 𝑎     

𝜎𝑟𝑧(𝑟, −𝜙) = 𝑇𝛿(𝑟 − ℎ) , 0 ≤ 𝑟 ≤ 𝑎                                                                           (3) 

On the circular arc 

𝜎𝑟𝑧(𝑎, 𝜃) = 0 , −𝝓 ≤ 𝜃 ≤ 𝝓                                                                                           (4) 

On the crack surface 

  𝑊(𝑟, 0+) ≠ 𝑊(𝑟, 0−) , 0 ≤ 𝑟 ≤ 𝑐                                                                                                  (5) 

𝜎𝜃𝑧(𝑟, 0 ) = 0 , 0 ≤ 𝑟 ≤ 𝑐  

The continuity conditions are 

𝑊(𝑟, 0+) = 𝑊(𝑟, 0−) , 𝑐 < 𝑟 ≤ 𝑎                                                                                                  (6) 

𝜎𝜃𝑧(𝑟, 0+) = 𝜎𝜃𝑧(𝑟, 0−) , 𝑐 < 𝑟 ≤ 𝑎  
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The asymptotic behavior of the displacement is 

𝑊(𝑟, 𝜃) = 𝑂(𝑟1−𝜆) , 0 < 𝜆 < 1 , 𝑎𝑠 𝑟 → 0                                                                   (7) 

The finite Mellin transform of the second kind is defined as 

𝑀2[𝑊(𝑟, 𝜃), 𝑠] = �̂�(𝑠, 𝜃) = ∫ (
𝑎2𝑠

𝑟𝑠+1
+ 𝑟𝑠−1) 𝑊(𝑟, 𝜃)

𝑎

0
𝑑𝑟                                       (8) 

Where s is a complex transform parameter .Inversion of this transform is defined by 

𝑀−1[�̂�(𝑠, 𝜃), 𝑟] = 𝑊(𝑟, 𝜃) =
(−1)𝑗

2𝜋𝑖
∫ �̂�

𝜎+𝑖∞

𝜎−𝑖∞
(𝑠, 𝜃)𝑟−𝑠𝑑𝑠                                                  (9) 

Application of (8) to the Laplace equation (2) in conjunction with the Leibnitz rule for 

differentiating the integral and integration by parts yields 

𝜕2�̂�

𝜕𝜃2
(𝑠, 𝜃) + 𝑠2�̂�(s, 𝜃) = −2𝑎𝑠+1 𝜕𝑊(𝑎,𝜃)

𝜕𝑟
                                                                        (10) 

Applying the boundary condition (4) on (10) with the aid of first of (1) leads to 

(
𝑑2

𝑑𝜃2 + 𝑠2) �̂�(𝑠, 𝜃) = 0                                                                                                (11) 

Provided that 

lim
𝑟→0

[(𝑎2𝑠𝑟−𝑠 + 𝑟𝑠)𝑟
𝜕𝑊(𝑎,𝜃)

𝜕𝑟
+ 𝑠(𝑎2𝑠𝑟−𝑠 − 𝑟𝑠)𝑊(𝑎, 𝜃)] = 0                                    (12) 

Referring to (12) in view of (7) leads to 

lim
𝑟→0

[(𝑎2𝑠𝑟−𝑠 + 𝑟𝑠)𝑟1−𝜆 + 𝑠(𝑎2𝑠𝑟−𝑠 − 𝑟𝑠)𝑟1−𝜆] =  

Lim
𝑟→0

[(𝑎2𝑠𝑟−2𝑠 + 1)𝑟𝑠+1−𝜆 + 𝑠(𝑎2𝑠𝑟−2𝑠 − 1)𝑟𝑠+1−𝜆] =  

lim
𝑟→0

[(1 + 𝑠)𝑎2𝑠𝑟−2𝑠 + 1 − 𝑠]𝑟𝑠+1−𝜆  

But,𝑟 < 𝑎 𝑖𝑚𝑝𝑙𝑖𝑒𝑠 
𝑎

𝑟
> 1 𝑜𝑟 (

𝑎

𝑟
)

2𝑠

> 1 

Hence 

(1 + 𝑠)𝑎2𝑠𝑟−2𝑠 + (1 − 𝑠) > (1 + 𝑠) + (1 − 𝑠) = 2  

Implies that 

𝑟𝑠+1−𝜆 → 0 𝑎𝑠 𝑟 → 0  

if 

𝑅𝑒𝑠 1 − 𝜆 > 0  𝑜𝑟 𝑅𝑒𝑠 > 𝜆 − 1                                                                                                   (13) 
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where Re means real part of. 

Considerthesolutionof(11)beoftheform 

�̂�(𝑠, 𝜃) = 𝐴1(𝑠)𝑐𝑜𝑠𝜃𝑠 + 𝐴2(𝑠)𝑠𝑖𝑛𝜃𝑠 , 0 ≤ 𝜃 ≤ 𝝓                                                            (14) 

�̂�(𝑠, 𝜃) = 𝐵1(𝑠)𝑐𝑜𝑠𝜃𝑠 + 𝐵2(𝑠)𝑠𝑖𝑛𝜃𝑠 , −𝝓 ≤ 𝜃 ≤ 0  

WIENER-HOPF METHOD OF SOLUTION 

By employing the continuity conditions and the Wiener-Hopf technique, Noble (1958), for the 

determination of the coefficients 𝐴𝑖(𝑠) 𝑎𝑛𝑑 𝐵𝑖(𝑠) , 𝑖 = 1,2 we obtain 

𝜇

2
𝐸+(𝑠) = 𝑁(𝑠) [𝐹−(𝑠) −

𝑇𝐾(𝑠)(
ℎ

𝑐
)

𝑠

𝑐𝑜𝑠𝜙𝑠
]                                                                                    (15) 

where 

𝑁(𝑠) =
𝑁−(𝑠)

𝑁+(𝑠)
  =

𝑐𝑜𝑠𝜙𝑠

𝑠𝑠𝑖𝑛𝜙𝑠
                                                                                     (16) 

𝐹−(𝑠) = ∫ [(
𝑎

𝑐
)

2𝑠 1

𝜌
+ 𝜌𝑠] 𝜎𝜃𝑧(𝑐𝜌, 0)𝑑𝜌

𝑎

𝑐
1

                                                                        (17) 

𝐸+(𝑠) = ∫ (
(𝑎𝑐−1)

2𝑠

𝜌𝑠+1 𝜌𝑠−1)
1

0
[𝑊(𝑐𝜌, 0+) − 𝑊(𝑐𝜌, 0−)]𝑑𝜌                                                          (18) 

The coefficients in (14) can now be written in terms of (17) as 

𝐴1(𝑠) =
𝑐𝑠

𝜇𝑠
𝐹−(𝑠)

𝑐𝑜𝑠𝜙𝑠

𝑠𝑖𝑛𝜙𝑠
−

𝑇

𝜇𝑠

𝐾(𝑠)ℎ𝑠

𝑠𝑖𝑛𝜙𝑠
                                                                                   (19) 

𝐴2(𝑠) =
𝑐𝑠

𝜇𝑠
𝐹−(𝑠)  

𝐵1(𝑠) = −
𝑐𝑠

𝜇𝑠
𝐹−(𝑠)

𝑐𝑜𝑠𝜙𝑠

𝑠𝑖𝑛𝜙𝑠
+

𝑇

𝜇𝑠

𝐾(𝑠)ℎ𝑠

𝑠𝑖𝑛𝜙𝑠
  

𝐵2(𝑠) =
𝑐𝑠

𝜇𝑠
𝐹−(𝑠)  

It can  be seen from (7) that 𝐹−(𝑠) is analytic for 𝑅𝑒𝑠 <
1

2
, so is a left half hand function. The 

function 𝐸+(𝑠) is analytic in the strip𝑅𝑒𝑠 > 𝜆 − 1, so is a right half hand function. 

Equation (15) will be solved to determine 𝐹−(𝑠) and 𝐸+(𝑠) based on Wiener-Hopf technique. 

The function 𝑁(𝑠) in (15) is decomposed as (16). 

To find 𝑁−(𝑠) 𝑎𝑛𝑑 𝑁+(𝑠), we use the infinite product expansion of 𝑐𝑜𝑠𝝓𝑠 𝑎𝑛𝑑 𝑠𝑖𝑛𝝓𝑠 (Korn 

and Korn (1968))given as 

𝑐𝑜𝑠𝝓𝑠 = ∏ (1 − [
2𝜙𝑠

(2𝑛−1)𝜋
]

2
)∞

𝑛=1                                                                                     (20) 
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and 

𝑠𝑖𝑛𝝓𝑠 = 𝝓𝑠 ∏ [1 − (
𝜙𝑠

𝑛𝜋
)

2

]∞
𝑛=1                                                                                    (21) 

To get 

𝑁+(𝑠) = 𝝓𝑠2
𝛤(

2𝜙𝑠

𝜋
+1)

[𝛤(
𝜙𝑠

𝜋
+1)]

2 𝑒𝝍𝒔                                                                                                               (22) 

which is never zero, except if s=0. 

On the other hand, 

𝑁−(𝑠) =
𝛤(1−

2𝜙𝑠

𝜋
)

[𝛤(1−
𝜙𝑠

𝜋
)]

2 𝑒𝜓𝑠                                                                                                                        (23) 

where 𝑒𝜓𝑠is introduced to make the expressions in (22) and (23) to have algebraic behavior for 

large s. The algebraic behavior of the gamma function as|𝑠| → ∞ is obtained by analyzing 

𝛤(𝛽𝑤 + 1) = √2𝜋𝛽𝑤(𝛽𝑤)𝛽𝑤𝑒−𝛽𝑤𝛽                                                                                            (24) 

And applying (22) and noting that 𝛽 =
𝜙

𝜋
 𝑎𝑛𝑑 𝑤 = 𝑠, 𝑤𝑒 obtain the following results: 

𝜓 = −
2𝜙

𝜋
ln 2                                                                                                                                        (25) 

𝑁+(0) = 0                                                                                                                                             (26) 

𝑁+(𝑠) = 𝜙
1

2𝑠
3

2 𝑎𝑠 |𝑠| → ∞                                                                                                                 (27) 

 

Now,substituting (16) into (15) we obtain 

𝜇

2
𝐸+(𝑠)𝑁+(𝑠) = 𝑁−(𝑠)𝐹−(𝑠) − 𝑇𝑁−(𝑠)

𝐾(𝑠)(
ℎ

𝑐
)

𝑠

𝑐𝑜𝑠𝜙𝑠
                                                            (28) 

                           = 𝑁−(𝑠)𝐹−(𝑠) − 𝑇𝐿(𝑠)  

where 

𝐿(𝑠) =
𝐾(𝑠)(

ℎ

𝑐
)

𝑠
𝑁−(𝑠)

𝑐𝑜𝑠𝜙𝑠
                                                                                                            (29) 

Now, we decompose L(s) as 

𝐿(𝑠) = 𝑇[𝐿+(𝑠) + 𝐿−(𝑠)]                                                                                                (30) 

Then, using Mittag-Leffler’s expansion theorem of 𝑠𝑒𝑐𝝓𝑠 given in(Spiegel,et’al,2009) to get 

http://www.iiardjournals.org/
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𝐿+(𝑠) = −
1

𝜋
∑

(−1)𝑛

𝜙𝑠

𝜋
+𝛼𝑛

𝐾 (−
𝜋

𝜙
𝛼𝑛) (

ℎ

𝑐
)

𝑠
∞
𝑛=1 𝑁− (−

𝜋

𝜙
𝛼𝑛)                                                               (31) 

𝐿−(𝑠) =
1

𝜋
∑

(−1)𝑛

𝜙𝑠

𝜋
−𝛼𝑛

∞
𝑛=1 𝐾(𝑠) (

ℎ

𝑐
)

𝑠

𝑁−(𝑠)                                                                                        (32) 

where 

𝛼𝑛 =
2𝑛−1

2
  

Because the function analytic in the left half plane are equal to the function analytic in the right 

half plane, each function is an analytic continuation of the other with the fundamental strip as 

the strip of equality. Therefore, each side is bounded and analytic in the entire s-plane. By 

Liouville’s theorem (Spiegel,2009), they are equal to a constant. In other words, 

𝜇

2
𝐸+(𝑠)𝑁+(𝑠) + 𝑇𝐿+(𝑠) = 𝑁−(𝑠)𝐹−(𝑠) − 𝑇𝐿−(𝑠) = 𝐻0                                                         (33) 

Since (33) is true for all s, it must be true for s=0. 

The constant 𝐻0 can be determined from the behavior of 𝑁−(𝑠)𝐹−(𝑠) 𝑎𝑛𝑑 𝐿−(𝑠) at s=0, and it 

is given by 

𝐻0 = 𝑇𝐿+(0)                                                                                                                                      (34) 

where 

𝐸+(0)𝑁+(0) + 𝑇𝐿+(0) = 𝐻0                                                                                                                   (35) 

𝐹−(0)𝑁−(0) − 𝑇𝐿−(0) = 𝐻0                                                                                                          (36) 

but 

𝐸+(0) ≠ 0  

𝐹−(0) ≠ 0  

so, (33) yields 

𝐸+(𝑠) =
2𝑇

𝜇

[𝐿+(0)−𝐿+(𝑠)]

𝑁+(𝑠)
                                                                                                        (37) 

and 

𝐹−(𝑠) = 𝑇
[𝐿+(0)+𝐿−(𝑠)]

𝑁−(𝑠)
                                                                                                                      (38) 

then, (33) now becomes 

−
𝜇

2
𝐸+(𝑠)𝑁+(𝑠) + 𝐹−(𝑠)𝑁−(𝑠) = 𝑇[𝐿+(𝑠) + 𝐿−(𝑠)] = 𝑇𝐿(𝑠)                                             (39) 

Use made of (16), (29) and (33), 𝐹−(𝑠) can now be written in terms of 𝐸+(𝑠) as 

http://www.iiardjournals.org/
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𝐹−(𝑠) =
𝜇

2
𝐸+(𝑠)

𝑠𝑠𝑖𝑛𝜙𝑠

𝑐𝑜𝑠𝜙𝑠
+

𝑇𝐾(𝑠)(
ℎ

𝑐
)

𝑠

𝑐𝑜𝑠𝜙𝑠
                                                                                                (40) 

Consequently, the coefficients in (14) can then be written  in terms of 𝐸+(𝑠) through (19) and 

(40) as 

𝐴1(𝑠) =
𝑐𝑠

2
𝐸+(𝑠)                                                                                                                                  (41) 

𝐴2(𝑠) =
𝑐𝑠

2
𝐸+(𝑠)

𝑠𝑖𝑛𝜙𝑠

𝑐𝑜𝑠𝜙𝑠
+

𝑇

𝜇𝑠

𝐾(𝑠)ℎ𝑠

𝑐𝑜𝑠𝜙𝑠
  

𝐵1(𝑠) = −
𝑐𝑠

2
𝐸+(𝑠)  

𝐵2(𝑠) =
𝑐𝑠

2
𝐸+(𝑠)

𝑠𝑖𝑛𝜙𝑠

𝑐𝑜𝑠𝜙𝑠
+

𝑇

𝜇𝑠

𝐾(𝑠)ℎ𝑠

𝑐𝑜𝑠𝜙𝑠
  

Then the transformed displacement sought for in (14) is derived for  0 ≤ 𝜃 ≤ 𝝓 in terms 

of 𝐹−(𝑠) using 

(19) and (40) as 

�̂�(𝑠, 𝜃) =
1

𝜇𝑠
[𝐹−(𝑠)

𝑐𝑜𝑠(𝜙−𝜃)𝑠

𝑠𝑖𝑛𝜙𝑠
− 𝑇𝐾(𝑠)

𝑐𝑜𝑠𝜃𝑠(
ℎ

𝑐
)

𝑠

𝑠𝑖𝑛𝜙𝑠
] 𝑐𝑠                                                          (42) 

And for −𝝓 ≤ 𝜃 ≤ 0, we get 

�̂�(𝑠, 𝜃) =
1

𝜇𝑠
[−𝐹−(𝑠)

𝑐𝑜𝑠(𝜙+𝜃)𝑠

𝑠𝑖𝑛𝜙𝑠
+ 𝑇𝐾(𝑠)

𝑐𝑜𝑠𝜃𝑠(
ℎ

𝑐
)

𝑠

𝑠𝑖𝑛𝜙𝑠
] 𝑐𝑠                                                              (43) 

Also, in terms of 𝐸+(𝑠), the transformed displacement is derived using (14), (41) for 0 ≤ 𝜃 ≤
𝝓 as 

�̂�(𝑠, 𝜃) = [
𝐸+(𝑠)

2

𝑐𝑜𝑠(𝜙−𝜃)𝑠

𝑐𝑜𝑠𝜙𝑠
+

𝑇

𝜇

𝐾(𝑠)(
ℎ

𝑐
)

𝑠
𝑠𝑖𝑛𝜃𝑠

𝑠𝑐𝑜𝑠𝜙𝑠
] 𝑐𝑠                                                         (44) 

for −𝝓 ≤ 𝜃 ≤ 0, we have 

�̂�(𝑠, 𝜃) = − [
𝐸+(𝑠)

2

𝑐𝑜𝑠(𝜙+𝜃)𝑠

𝑐𝑜𝑠𝜙𝑠
−

𝑇

𝜇

𝐾(𝑠)(
ℎ

𝑐
)

𝑠
𝑠𝑖𝑛𝜃𝑠

𝑠𝑐𝑜𝑠𝜙𝑠
] 𝑐𝑠                                                          (45) 

 

RESULTS AND DISCUSSIONS   

The displacement fields everywhere in the finite wedge are obtained through the inversion 

formula defined by (9). Two regions emerge (see appendix for diagram), each made up of two 

sub regions for estimation of the displacement fields in accordance with the conditions that 

ensure  associated series converge. One region is formed by two other sub regions that occur 

when 0 ≤ 𝜃 ≤ 𝝓 , 0 ≤ 𝑟 ≤ 𝑐 and the powers in (
𝑟

𝑐
)

−𝑠

, obtained from the application of residue 
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theorem, are required to possess positive values. For this case, s should have negative values 

for corresponding residue appropriate for the domain of 𝐹−(𝑠). The other sub regions also 

originates from consideration of residue appropriate for the domain of 𝐹−(𝑠) when −𝝓 ≤ 𝜃 ≤
0 𝑎𝑛𝑑 0 ≤ 𝑟 ≤ 𝑐. The two series converge as 𝑟 → 0. 

The second region is also made up of two sub regions, but associated with positive residues 

appropriate for the domain of 𝐸+(𝑠).The two sub regions originate from consideration for the 

ranges 0 ≤ 𝜃 ≤ 𝝓 , −𝝓 ≤ 𝜃 ≤ 0 𝑎𝑛𝑑 𝑐 < 𝑟 ≤ 𝑎. It is required that the power of (
𝑟

𝑐
)

−𝑠

, 

obtained from the application of residue theorem, be positive so that the series converges 

as 𝑟 → ∞. 

The displacements everywhere in the wedge is then derived as following: 

FOR THE REGION CONTAINING THE CRACK 

(0 ≤ 𝑟 ≤ 𝑐 , −𝝓 ≤ 𝜃 ≤ 𝝓). 

Using (9) , (42) , (43)for the regions 0 ≤ 𝜃 ≤ 𝝓 , 𝑎𝑛𝑑 − 𝝓 ≤ 𝜃 ≤ 0,   

0 ≤ 𝑟 ≤ 𝑐 for both respectively yields 

𝑊(𝑟, 𝜃) =
1

𝜇𝑠
[

1

2𝜋𝑖
∫ {𝐹−(𝑠)

𝑐𝑜𝑠(𝜙−𝜃)𝑠

𝑠𝑖𝑛𝜙𝑠
− 𝑇

𝐾(𝑠)(
ℎ

𝑐
)

𝑠
𝑐𝑜𝑠𝜃𝑠

𝑠𝑖𝑛𝜙𝑠
}

𝜎+𝑖∞

𝜎−𝑖∞
] (

𝑟

𝑐
)

−𝑠

𝑑𝑠                                    (46) 

and 

𝑊(𝑟, 𝜃) =
1

𝜇𝑠
[

1

2𝜋𝑖
∫ {−𝐹−(𝑠)

𝑐𝑜𝑠(𝜙+𝜃)𝑠

𝑠𝑖𝑛𝜙𝑠
+ 𝑇

𝐾(𝑠)(
ℎ

𝑐
)

𝑠
𝑐𝑜𝑠𝜃𝑠

𝑠𝑖𝑛𝜙𝑠
}

𝜎+𝑖∞

𝜎−𝑖∞
] (

𝑟

𝑐
)

−𝑠

𝑑𝑠                                (47) 

The Bromwich integrals in (46) and (47) can be evaluated by Cauchy’s residue theorem in 

accordance with Jordan’s Lemma. 

The integrands has a pole of order 2 at s=0 and simple poles at 𝑠𝑛 = ±
𝑛𝜋

𝜙
 , 𝑛 = 1,2,3, …We 

will be concerned with simple poles 𝑠𝑛 = −
𝑛𝜋

𝜙
 , 𝑛 = 1,2,3, …for a reason earlier given. Then, 

we obtain the sum of residues for the displacements in their dominant term when n=1 as 𝑟 →
0 for both regions as 

𝑊(𝑟, 𝜃) =
1

𝜇𝜋
[𝐹− (−

𝜋

𝜙
) + 𝑇𝐾 (−

𝜋

𝜙
) (

𝑐

ℎ
)

𝜋

𝜙
] 𝑐𝑜𝑠

𝜋𝜃

𝜙
(

𝑟

𝑐
)

𝜋

𝜙
 , 𝑟 < 𝑐    (48) 

 

and 

𝑊(𝑟, 𝜃) = −
1

𝜇𝜋
[𝐹− (−

𝜋

𝜙
) + 𝑇𝐾 (−

𝜋

𝜙
) (

𝑐

ℎ
)

𝜋

𝜙
] 𝑐𝑜𝑠

𝜋𝜃

𝜙
(

𝑟

𝑐
)

𝜋

𝜙
 , 𝑟 < 𝑐   (49) 

DISPLACEMENT FOR THE REGION AHEAD OF THE CRACK 
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 (−𝝓 ≤ 𝜃 ≤ 𝝓 , 𝑐 < 𝑟 ≤ 𝑎). 

The displacement for these regions,0 ≤ 𝜃 ≤ 𝝓 𝑎𝑛𝑑 − 𝝓 ≤ 𝜃 ≤ 0 , both for 𝑐 < 𝑟 ≤ 𝑎 , 𝑟 →
∞ 𝑜𝑟 

1

𝑟
→ 0 is evaluated with the help of (9) , (44) and (45) respectively as 

𝑊(𝑟, 𝜃) =
1

2𝜋𝑖
∫ {

𝐸+(𝑠)

2
𝑐𝑜𝑠(𝜙 − 𝜃)𝑠 +

𝑇

𝜇
𝐾(𝑠) (

ℎ

𝑐
)

𝑠 𝑠𝑖𝑛𝜃𝑠

𝑠
}

1

𝑐𝑜𝑠𝜙𝑠

𝜎+𝑖∞

𝜎−𝑖∞
(

𝑟

𝑐
)

−𝑠

𝑑𝑠   (50) 

and 

𝑊(𝑟, 𝜃) = −
1

2𝜋𝑖
∫ {

𝐸+(𝑠)

2
𝑐𝑜𝑠(𝜙 + 𝜃)𝑠 −

𝑇

𝜇
𝐾(𝑠) (

ℎ

𝑐
)

𝑠 𝑠𝑖𝑛𝜃𝑠

𝑠
}

𝜎+𝑖∞

𝜎−𝑖∞

1

𝑐𝑜𝑠𝜙𝑠
(

𝑟

𝑐
)

−𝑠

𝑑𝑠                 (51) 

The integrands in (50) and (51) are to be evaluated by the residue method. The integrands has 

simple poles at𝑠𝑛 = ±
(2𝑛−1)

2

𝜋

𝜙
 , 𝑛 = 1,2,3, …We will be concerned with simple poles at 𝑠𝑛 =

(2𝑛−1)

2

𝜋

𝜙
. 

Using the same approach as in the region above, we now obtain the sum of residues for the 

displacement fields in their dominant term when 𝑛 = 1 , 𝑎𝑠 𝑟 → ∞ ,
1

𝑟
→ 0 for both regions as 

𝑊(𝑟, 𝜃) = −
1

𝜙
{

𝐸+(
𝜋

2𝜙
)

2𝜙
+

2𝑇𝜙

𝜇𝜋
𝐾 (

𝜋

2𝜙
) (

ℎ

𝑐
)

𝜋

2𝜙
} 𝑠𝑖𝑛

𝜋𝜃

2𝜙
(

𝑐

𝑟
)

𝜋

2𝜙
, 𝑟 > 𝑐   (52)  

and 

𝑊(𝑟, 𝜃) = −
1

𝜙
{

𝐸+(
𝜋

2𝜙
)

2𝜙
+

2𝑇𝜙

𝜇𝜋
𝐾 (

𝜋

2𝜙
) (

ℎ

𝑐
)

𝜋

2𝜙
} 𝑠𝑖𝑛

𝜋𝜃

2𝜙
(

𝑐

𝑟
)

𝜋

2𝜙
, 𝑟 > 𝑐  (53) 

 

 

CRACK TIP DISPLACEMENT 

In order  to obtain the crack tip displacement, a local polar coordinate(𝜌, 𝜓)is introduced with 

the origin at the wedge apex (see appendix for diagram).The main property of the coordinate 

in this analysis is that 

𝜃 ≈ 0, 𝝍 ≈ 0 , 𝜃 = 𝝍 , 𝑟 → 𝑐 𝑎𝑠 𝜌 → 0 (54) 

Using the vector triangle rule, we obtain 

𝑟

𝑐
= 1 +

𝜌

𝑐
𝑐𝑜𝑠𝝍 + 𝑂(𝜌2) 𝑎𝑠 𝜌 → 0                                                                                             (55) 

then, the crack tip displacement is studied through (44) and (45) for the regions 0 ≤ 𝜃 ≤ 𝝓 , 

http://www.iiardjournals.org/
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 −𝝓 ≤ 𝜃 ≤ 0,both for 𝑐 < 𝑟 ≤ 𝑎 respectively in terms of the local coordinate(𝜌, 𝜓). Then, we 

set 

𝑊(𝜌, 𝜓) =
1

2𝜋𝑖
∫

𝐸+(𝑠)

2

𝜎+𝑖∞

𝜎−𝑖∞
(

𝑟

𝑐
)

−𝑠

𝑑𝑠 , 𝜆 − 1 < 𝜎 <
1

2
 (56) 

𝑊(𝜌, 𝜓) = −
1

2𝜋𝑖
∫

𝐸+(𝑠)

2

𝜎+𝑖∞

𝜎−𝑖∞
(

𝑟

𝑐
)

−𝑠

𝑑𝑠 , 𝜆 < 1 < 𝜎 <
1

2
 (57) 

and 𝜃 → 𝝍 , 𝑟 → 𝜌 𝑎𝑛𝑑 𝜃 = 0 , 𝜌 → 0. 

Using the method of Choi and Earmme (1990), the integral in (56) and (57) is computed by 

setting 𝜎 = 0 and splitting the symmetric interval (−𝑖∞ , 𝑖∞) into three such that 

(−𝑖∞, 𝑖∞) = (−𝑖∞, −𝑖 (
𝜌

𝑐
)

𝛽
) ⋃ (−𝑖 (

𝜌

𝑐
)

𝛽

, 𝑖 (
𝜌

𝑐
)

𝛽
) ⋃ (𝑖 (

𝜌

𝑐
)

𝛽

, 𝑖∞)                                   (58) 

Then, using (37) and the approximation in (56) in conjunction with entry 3.381(3) of 

Gradshyteyn and Ryzik (1965), we obtain the crack tip displacements for0 ≤ 𝜃 ≤ 𝝓 𝑎𝑛𝑑 −
𝝓 ≤ 𝜃 ≤ 0,both for 𝑐 < 𝑟 ≤ 𝑐 as 

𝑊(𝜌, 𝜓) = 𝛿0 +
2𝑇𝐿+(0)

𝜇√𝜋𝜓
(

𝜌

𝑐
)

1

2
𝑠𝑖𝑛

𝜓

2
 (59) 

 

 

and 

𝑊(𝜌, 𝜓) = 𝜑0 +
2𝑇𝐿+(0)

𝜇√𝜋𝜓
(

𝜌

𝑐
)

1

2
𝑠𝑖𝑛

𝜓

2
                                                                                            (60) 

where 

𝛿0 = 𝜑0 is a constant defining a rigid body motion. 

Now,the displacement fields obtained in (49) , (50) , (53) and (54) is now obtained in closed–

form by substituting (37) and (38) into (49) , (50) , (53) and (54) respectively. 

Then, for the region containing the crack ,0 ≤ 𝜃 ≤ 𝝓 , 0 ≤ 𝑟 ≤ 𝑐,we have 

𝑊(𝑟, 𝜃) =
𝑇

𝜇
[[𝐿+(0) + 𝐿− (−

𝜋

𝜙
)] + 𝐾 (−

𝜋

𝜙
) (

𝑐

ℎ
)

𝜋

𝜙
] 𝑐𝑜𝑠

𝜋𝜃

𝜙
(

𝑟

𝑐
)

𝜋

𝜙
< , 𝑟 < 𝑐                      (61) 

for−𝝓 ≤ 𝜃 ≤ 0 , 0 ≤ 𝑟 ≤ 𝑐,weget 

𝑊(𝑟, 𝜃) = −
𝑇

𝜇
[[𝐿+(0) + 𝐿− (−

𝜋

𝜙
)] + 𝐾 (−

𝜋

𝜙
) (

𝑐

ℎ
)

𝜋

𝜙
] 𝑐𝑜𝑠

𝜋𝜃

𝜙
(

𝑟

𝑐
)

𝜋

𝜙
, 𝑟 < 𝑐                       (62) 

FOR THE DISPLACEMENT IN THE REGION AHEAD OF THE CRACK 
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(−𝝓 ≤ 𝜃 ≤ 𝝓 , 𝑐 < 𝑟 ≤ 𝑎), we get for 0 ≤ 𝜃 ≤ 𝝓 , 𝑐 < 𝑟 ≤ 𝑎 , 𝑟 → ∞ 𝑜𝑟  

1

𝑟
→ 0  

𝑊(𝑟, 𝜃) = −
2𝑇

𝜇𝜋
[[

𝐿+(0)−𝐿+(
𝜋

2𝜙
)

2𝜙
] + 𝐾 (

𝜋

2
) (

ℎ

𝑐
)

𝜋

2𝜙
] 𝑠𝑖𝑛

𝜋𝜃

2𝜙
(

𝑐

𝑟
)

𝜋

2𝜙
 , 𝑟 > 𝑐 (63) 

And for −𝝓 ≤ 𝜃 ≤ 0 , 𝑐 < 𝑟 ≤ 𝑎 , 𝑎𝑠 𝑟 → ∞ 𝑜𝑟 
1

𝑟
→ 0, we get 

𝑊(𝑟, 𝜃) = −
2𝑇

𝜇𝜋
[[

𝐿+(0)−𝐿+(
𝜋

2𝜙
)

2𝜙
] + 𝐾 (

𝜋

2
) (

ℎ

𝑐
)

𝜋

2𝜙
] 𝑠𝑖𝑛

𝜋𝜃

2𝜙
(

𝑐

𝑟
)

𝜋

2𝜙
 , 𝑟 > 𝑐                                 (64) 

 

CONCLUSION 

A finite isotropic cracked wedge with equal apex angle𝜙,material constant𝜇 and a crack which 

lies on the line𝜃 = 0 , 0 ≤ 𝑟 ≤ 𝑐 has been considered , with a particular attention given to 

displacements 𝑊(𝑟, 𝜃) everywhere in the cracked wedge.A closed-form of the solution is 

obtained in this study by the Wiener-Hopf technique .The result shows that: 

i) at the region containing the crack,0 ≤ 𝜃 ≤ 𝝓 , 0 ≤ 𝑟 ≤ 𝑐 𝑎𝑛𝑑 − 𝝓 ≤ 𝜃 ≤ 0 , 0 ≤
𝑟 ≤ 𝑐,𝑟 → 0 

𝑊(𝑟, 0+) ≠  −𝑊(𝑟, 0−)  

implies that there is no continuity of the displacement fields along the crack region 

ii) at the region ahead of the crack0 ≤ 𝜃 ≤ 𝝓 , 𝑐 < 𝑟 ≤ 𝑎 𝑎𝑛𝑑 − 𝝓 ≤ 𝜃 ≤ 0 , 𝑐 < 𝑟 ≤
𝑎 , 𝑟 → ∞ 

𝑜𝑟 
1

𝑟
→ 0  

𝑊(𝑟, 0+) = 0  

𝑊(𝑟, 0−) = 0  

Implies that in the region ahead of the crack, there is continuity of the displacement fields. 

Therefore, all boundary conditions are satisfied. 
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APPENDIX 
 

𝑊(𝑟, 0+) ≠ 𝑊(𝑟, 0−) 

 

  

                                 

  

  

 

𝜎𝜃𝑧(𝑟, −𝜙) = 𝑇𝛿(𝑟 − ℎ)                                                                                                           

 

 

Figure I.    GEOMETRY OF THE PROBLEM.  

 

 

 

 

 r 

  

 

 

 

 

 

 

   

𝜎𝜃𝑧(𝑟, 𝜙) = 𝑇𝛿(𝑟 − ℎ) 

𝜎𝜃𝑧(𝑟, 0) = 0 

 

0 ≤ 𝑟 ≤ 𝑐 

r 

𝜃 
𝜙                                                                             

   

c 
a 

      c 

0 ≤ 𝑟 ≤ 𝑐 

-𝜙 𝜎𝑟𝑧(𝑎, 𝜃) = 0 

 

𝑊(𝑟, 𝜃) 

0 ≤ 𝜃 ≤ 𝝓 , 0 ≤ 𝑟 ≤ 𝑐 

 𝑊(𝑟, 𝜃)

,,,  0 ≤ 𝜃 ≤ 𝝓 , 

                𝑐 < 𝑟 ≤ 𝑎                       
 

𝑊(𝑟, 𝜃) 

-ɸ≤ 𝜃 ≤ 0 ,0 ≤ 𝑟 ≤ 𝑐 

𝑊(𝑟, 𝜃) 

-ɸ≤ 𝜃 ≤ 0 , 𝑐 < 𝑟 ≤ 𝑎 
 

ɸ 

-ɸ 

𝜃 
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Figure II.    DISTRIBUTION OF DISPLACEMENT FIELDS 

  

 

 

 

 

 

 

  

 

Figure III.        LOCAL POLAR COORDINATE (𝜌, 𝜓) AT THE CRACK TIP   

FigureI.GEOMETRY OF THE PROBLEM. 

 

FigureII. DISTRIBUTION OF DISPLACEMENT FIELDS 
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